A Probabilistic and Continuous Model of Protein Conformational Space for Template-Free Modeling

نویسندگان

  • Feng Zhao
  • Jian Peng
  • Joe DeBartolo
  • Karl F. Freed
  • Tobin R. Sosnick
  • Jinbo Xu
چکیده

One of the major challenges with protein template-free modeling is an efficient sampling algorithm that can explore a huge conformation space quickly. The popular fragment assembly method constructs a conformation by stringing together short fragments extracted from the Protein Data Base (PDB). The discrete nature of this method may limit generated conformations to a subspace in which the native fold does not belong. Another worry is that a protein with really new fold may contain some fragments not in the PDB. This article presents a probabilistic model of protein conformational space to overcome the above two limitations. This probabilistic model employs directional statistics to model the distribution of backbone angles and 2(nd)-order Conditional Random Fields (CRFs) to describe sequence-angle relationship. Using this probabilistic model, we can sample protein conformations in a continuous space, as opposed to the widely used fragment assembly and lattice model methods that work in a discrete space. We show that when coupled with a simple energy function, this probabilistic method compares favorably with the fragment assembly method in the blind CASP8 evaluation, especially on alpha or small beta proteins. To our knowledge, this is the first probabilistic method that can search conformations in a continuous space and achieves favorable performance. Our method also generated three-dimensional (3D) models better than template-based methods for a couple of CASP8 hard targets. The method described in this article can also be applied to protein loop modeling, model refinement, and even RNA tertiary structure prediction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRACER. A new approach to comparative modeling that combines threading with free-space conformational sampling.

A new approach to comparative modeling of proteins, TRACER, is described and benchmarked against classical modeling procedures. The new method unifies true three-dimensional threading with coarse-grained sampling of query protein conformational space. The initial sequence alignment of a query protein with a template is not required, although a template needs to be somehow identified. The templa...

متن کامل

De novo protein structure prediction by dynamic fragment assembly and conformational space annealing.

Ab initio protein structure prediction is a challenging problem that requires both an accurate energetic representation of a protein structure and an efficient conformational sampling method for successful protein modeling. In this article, we present an ab initio structure prediction method which combines a recently suggested novel way of fragment assembly, dynamic fragment assembly (DFA) and ...

متن کامل

De novo protein conformational sampling using a probabilistic graphical model

Efficient exploration of protein conformational space remains challenging especially for large proteins when assembling discretized structural fragments extracted from a protein structure data database. We propose a fragment-free probabilistic graphical model, FUSION, for conformational sampling in continuous space and assess its accuracy using 'blind' protein targets with a length up to 250 re...

متن کامل

Analysis of TASSER-based CASP7 protein structure prediction results.

An improved TASSER (Threading/ASSEmbly/Refinement) methodology is applied to predict the tertiary structure for all CASP7 targets. TASSER employs template identification by threading, followed by tertiary structure assembly by rearranging continuous template fragments, where conformational space is searched via Parallel Hyperbolic Monte Carlo sampling with an optimized force-field that includes...

متن کامل

Menger probabilistic normed space is a category topological vector space

In this paper, we formalize the Menger probabilistic normed space as a category in which its objects are the Menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. Then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. So, we can easily apply the results of topological vector spaces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of computational biology : a journal of computational molecular cell biology

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 2010